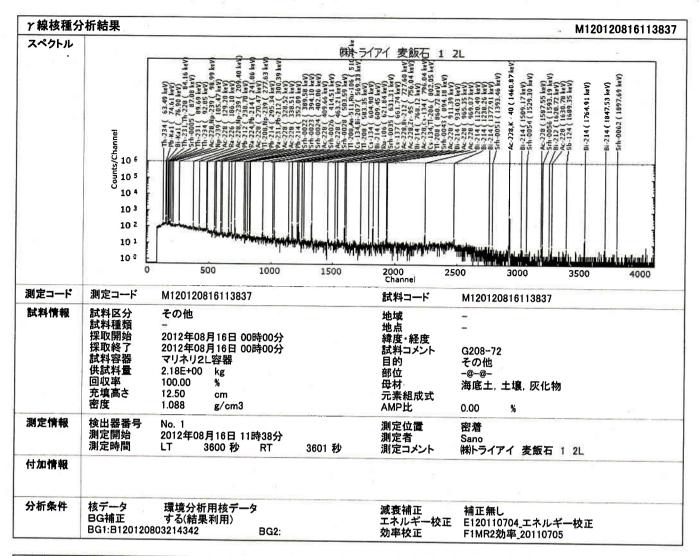
試験検査成績書

第 G208-72 号 平成 24 年 8 月 22 日

株式会社 エフ ユー アイ ジャパン 様


平成 24 年 8 月 16 日 ご依頼を受けました検査結果は、 下記のとおりです。 環境計量証明事業所 食品衛生法登録機関 厚生労働省発東海厚第0222001号 水道水水質検査機関 厚生労働省登録第126号 建築物飲料水水質検査業 静岡県11水第1号

株式会社 静環機・センター

試	料	名	麦飯石 1 2L	
採取	年月日:	時刻	平成 24 年 8 月 12 日	N A
特	記事	項	採取者:高岡浩一郎様 測定日:平成24年8月16日	

検 査	項	目	単位	結 果	検出限界	検	査	方	法
核種定性分析			Bq/kg	別紙記載		γ線ス′)	ペクトロメー	トリー (Ge≟	半導体検出器

以下余白

No.	核種名	エネルギー (keV)	半減期	放射能濃度 (Bq/kg)	荷重平均放射能濃度 (Bq/kg)	検出限界値 (Bq/kg)	マーク
1	Pb-210	46. 50	1.60E+03 Y	N D		5. 3782E+01	
2	Am-241	59. 54	4. 32E+02 Y	N D		4. 2279E+00	N
3	Pb-Ka1	74. 97	1.00E+10 Y	3. 2492E+00 ± 2. 8881E-01	3. 2492E+00 ± 2. 8881E-01	1. 9536E+00	
4	Bi-Ka1	77. 11	1.00E+10 Y	4. 7708E+00 ± 3. 0925E-01	4. 7708E+00 ± 3. 0925E-01	2. 5347E+00	
5	Th-228	84. 37	1.41E+10 Y	N D		5. 6543E+02	s
6	Th-231	89. 95	7. 04E+08 Y	LTD		1. 0054E+02	Ľ
7	Th-234	92. 80	4. 47E+09 Y	3. 2177E+01 ± 5. 7602E+00	3. 2177E+01 ± 5. 7602E+00	1. 6582E+01	_
8	Np-239	106. 14	2. 35E+00 D	N D	. =	3. 9217E+00	NE
9	Ce-144	133, 54 ⁻	2.85E+02 D	N D		7. 8139E+00	N N
10	Ge- 75m	139. 68	4. 77E+01 S	N D		2. 1466E+00	IN.
11	Tc- 99m	140. 51	6.01E+00 H	N D		9. 5875E-01	
12	U -235	143. 76	7. 04E+08 Y	N D		6. 8362E+00	
13	Ce-141	145. 44	3. 26E+01 D	N D		1.5422E+00	
14	Ra-226	186. 18	1.60E+03 Y	5. 1401E+01 ± 7. 6412E+00	5. 1401E+01 ± 7. 6412E+00	2. 5107E+01	
15	Te-132	228. 16	7.82E+01 H	N D	7,04122,00	9. 6571E-01	
16	Th-227	236. 00	7. 04E+08 Y	N D		7. 9658E+00	N
17	Pb-212	238. 63	1.41E+10 Y	2. 8669E+01 ± 8. 8266E-01	2. 8672E+01 ± 8. 7192E-01	3. 8291E+00	14
18	Ra-224	240. 98	1.41E+10 Y	LTD	2. 33.22.37 (2. 3. 71322 01	6. 5809E+01	LS
19	Ge- 75	264. 61	8. 28E+01 M	N D		7. 3414E+00	Lo
20	Y - 93	266. 90	1.03E+01 H	N D	=	1. 1006E+01	N
						1. 1000E+01	N
21	Ce-143	293. 26	3.30E+01 H	N D		3. 2625E+00	NS
22	Cr- 51	320. 08	2. 77E+01 D	N D		7. 8776E+00	No
23	Pb-214	351.99	1.60E+03 Y	1.8103E+01 ± 9.1177E-01	1.8579E+01 ± 7.5510E-01	2. 1766E+00	
24	I -131	364. 48	8. 04E+00 D	N D		1. 0528E+00	
25	Sb-125	427. 95	2. 71E+00 Y	N D		3. 0034E+00	
26	Ag-108m	434. 00	1. 27E+02 Y	N D		9. 9976E-01	
27	Te-129	459. 60	6.95E+01 M	N D		1. 1719E+01	N
28	Be- 7	477. 59	5.33E+01 D	N D		1. 1719E+01 1. 1235E+01	S
29	Ru-103	497. 08	3.94E+01 D	N D		9. 8659E-01	٥ ا
30	An-511	511.00	1.00E+10 Y	LTD	11	6. 1326E-01	LS

No.	核種名	エネルギー (keV)	半減期	放射能濃度 (Bq/kg)	荷重平均放射能濃度 (Bq/kg)	検出限界値 (Bq/kg)	₹-
31 32 33 34 35 36 37 38 39 40	Nd-147 Ba-140 Sr- 91 Bi-207 Ti-208 Ga- 74 Cs-134 Bi-214 Ru-106 As- 74	531. 01 537. 27 555. 57 569. 65 583. 14 595. 88 604. 66 609. 31 622. 20 634. 80	1. 10E+01 D 1. 28E+01 D 9. 48E+00 H 3. 83E+01 Y 1. 41E+10 Y 8. 25E+00 M 2. 06E+00 Y 1. 60E+03 Y 3. 67E+02 D 1. 78E+01 D	N D N D N D N D 2. 7030E+01 ± 1. 4227E+00 N D 7. 9019E+00 ± 4. 5452E-01 1. 8038E+01 ± 9. 7002E-01 N D N D	2.7145E+01 ± 1.3732E+00 7.7081E+00 ± 3.6038E-01 1.8758E+01 ± 8.6840E-01	6. 8187E+00 3. 5926E+00 1. 4537E+00 1. 1249E+00 2. 7589E+00 1. 0032E+00 9. 5231E-01 1. 8005E+00 8. 5963E+00 6. 0748E+00	S
41 42 43 44 45 46 47 48 49 50	Nb- 97 Cs-137 I -132 Sb-127 Te-129m Bi-212 Mo- 99 Zr- 97 Zr- 95 Nb- 95	657. 92 661. 64 667. 69 685. 70 695. 98 727. 27 739. 40 743. 36 756. 72 765. 79	7. 21E+01 M 3. 02E+01 Y 2. 28E+00 H 3. 91E+00 D 3. 35E+01 D 1. 41E+10 Y 6. 60E+01 H 1. 69E+01 H 6. 40E+01 D 3. 50E+01 D	N D 1. 2505E+01 ± 6. 0372E-01 N D N D N D 3. 4672E+01 ± 4. 2412E+00 N D N D N D N D N D N D N D N D	1. 2505E+01 ± 6. 0372E-01 3. 4672E+01 ± 4. 2412E+00	8. 5375E-01 1. 1285E+00 1. 1176E+00 2. 5576E+00 3. 2129E+01 1. 5290E+01 7. 9190E+00 9. 9046E-01 2. 0419E+00 1. 6246E+00	N NS S S S S
51 52 53 54 55 56 57 58 59 60	TI-206 Co- 58 Cs-136 Mn- 54 Mn- 56 Ag-110m Ac-228 Zn- 63 Pa-234m Fe- 59	803. 30 810. 76 818. 50 834. 83 846. 75 884. 67 911. 20 962. 06 1001. 03 1099. 22	1. 60E+03 Y 7. 08E+01 D 1. 30E+01 D 3. 12E+02 D 2. 58E+00 H 2. 52E+02 D 1. 41E+10 Y 3. 80E+01 M 4. 47E+09 Y 4. 46E+01 D	N D N D N D N D N D N D N D N D N D N D	2. 7396E+01 ± 1. 1047E+00	2. 8884E+04 9. 7682E-01 9. 3185E-01 1. 1691E+00 9. 8133E-01 1. 3360E+00 3. 9488E+00 2. 2427E+01 1. 8821E+02 2. 3425E+00	S S NDS
61 62 63 64 65 66 67	Zn- 65 Co- 60 Y - 91 Co- 60 K - 40 La-140 Sb-124	1115. 52 1173. 21 1208. 00 1332. 47 1460. 75 1596. 49 1691. 02	2. 44E+02 D 5. 27E+00 Y 5. 85E+01 D 5. 27E+00 Y 1. 28E+09 Y 4. 03E+01 H 6. 02E+01 D	N D N D N D N D 6. 3016E+02 ± 1. 5094E+01 N D N D	6.3016E+02 ± 1.5094E+01	2. 1923E+00 1. 3836E+00 5. 4736E+02 1. 1083E+00 1. 0315E+01 1. 4895E+00 1. 3677E+00	N S NS

γ線核種分析結果

5-P MH	- 394	-	ate ate
試料	30	疋1	育智

測定コード	測定コード	M120120816113837	試料コード	M120120816113837
試料情報	試料区分 試料種類 試料器 解の日時 採取試解了日時 採取試算優別 等算係数 無算に 所の 無算の 無 所の の の の の の の の の の の の の の の の の の	その他 - G208-72 マリネリ2L容器 2012年08月16日 00時00分 2012年08月16日 00時00分 2.177E+00 kg 100.00 % 100.00 % その他 -@-@-	地域 地域 神経度 経度 東期間 保料高 を を 日本 を 日本 を 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	0.00 時間 11.64 時間 12.50 cm 1.088 g/cm3 海底土, 土壌, 灰化物
則定情報	ライフタイム	1 2012年08月16日 11時38分 3600.0 秒 3601.5 秒	測定位置 測定者 チャンネル数 測定コメント	密着 Sano 4096 ch ㈱トライアイ 麦飯石 1 2L
寸加情報				THE PARTY OF THE P

分析条件

核データ	核ライブラリー	環境分析用核データ			
減衰補正	減衰補正	補正無し			
パックグラウンド 補正	バックグラウンド補正 バックグラウンド1	する(結果利用) B120120803214342		バックグラウンド2	
エネルギー 校正	エネルギー校正コード 分析時エネルギー校正 エネルギー対チャンネル エネルギー対半値幅校正	E120110704_エネルギー校正 エネルギ対チャンネル: しない 校正 ENE(keV) = 5.7660E-02 式 FWHM(ch) = 1.8086E+00	エネルギ対半値幅 + 5.0010E-01 ×ch + 1.8133E-02 ×√(Ene)+		
効率校正	効率校正コード 自己吸収補正 サム効果補正	F1MR2効率_20110705 する する	((()	効率校正の種類 高さ補正時のモード P/T校正コード	シングル(高さ補正なし) 高さ補正なし P_T校正22p3%
その他 パラメータ	ビーク面積計算方法 関数適合時の関数タイプ 適合モード 核種同定方法 信頼度	2.50 無効 計数のGaussian近似 関数適合主体 プログラムの判断による関数形選択 全て適合 キーラインのみで行う 0.70 L2 = 1.5 L1 = 1.5 L0 = 1.5 H0	= 1.5 H1 = 1.5 H2 = 1.5	核種同定幅 検出限界ファクター 検出の判定方法 短半減期核種のチェック 親娘によるの場合と 親娘によるの対象ピーク 外部定義データの引用 分析外部定義コード	1.00 3.00 検出限界(Cooper)との比較 無効 親娘関係を検出判定に使用しない 核データ全てを対象とする しない apeをテストするか テストしない

M120120816113837 2012年08月16日 11時38分

核種分析結果1

州足口时			20123	中08月16日	3 11時38分													
核種名	エネルギー	ピーク面	積	検出限界	半減期	放出比	サ/、効里	다 그 ms ib	海海技工	40.11.41								
	(keV)	(counts	s)	(counts)	(日)	(%)	神正仏数	台 L 吸収	減衰補正 補正係数		200000000000000000000000000000000000000		荷重平	均放射能	検出限界値	属性	Mark	計算方法
Pb-210	46.50	30.0 ±	37.8	116.7	5.84035E+05		1.000000			(%)	(Bq/		(B	q/kg)	(Bq/kg)		41313344
Am-241	59.54	52.7 ±	41.6		1.57788E+05		1.000000	0.752200 0.757916	1.000000	0.684					5.378E+01	%#		積算法
* Pb-Ka1	74.97	374.9 ±	33.3		3.65250E+12		1.000000	0.764649	1.000000	1.077	1.750E+00 ±	= 1.380E+00)		4.228E+00	%#	N	積算法
* Bi−Ka1	77.11	567.6 ±	36.8	301.6	3.65250E+12	100.00	1.000000	0.765559	1.000000	1.472	3.249E+00 ±	2.888E-01	3.249E+00) ± 2.888E-(01 1.954E+00	%#	••	関数適合
Th-228	84.37	-705.8 ±	277.9		5.15002E+12		1.000000		1.000000	1.518	4.771E+00 ±	3.092E-01	4.771E+00	± 3.092E-(01 2.535E+00	%#		関数適合
						1.21	1.000000	0.768595	1.000000	1.657	-4.490E+02 ±	1.768E+02			5.654E+02	%#	s	関数適合
< Th-231	89.95	125.9 ±	41.9	129.4	2.57063E+11	0.94	1.000000	0.770000	4.000								•	
* Th~234	92.80	243.3 ±	43.5		1.63194E+12		1.000000	0.770866	1.000000	1.747	9.781E+01 ±				1.005E+02	%#	L	関数適合
Np-239	106.14	3.8 ±	29.8		2.34600E+00	27.80		0.772006	1.000000	1.786	3.218E+01 ±	5.760E+00	3.218E+01	± 5.760E+0	0 1.658E+01	%#	_	関数適合
Ce-144	133.54	-30.9 ±	43.6		2.84500E+02	11.10	1.000000	0.777150	1.000000	1.925	9.068E-02 ±	7.106E-01			3.922E+00	\$#	NE	荷算法
Ge- 75m	139.68	-55.9 ±	41.5		5.52083E-04		1.000000	0.786780	1.000000	2.008	-1.769E+00 ±	2.497E+00			7.814E+00	\$#	N	積算法
				101.2	3.32003E-04	39.00	1.000000	0.788777	1.000000	1.999	-9.149E-01 ±	6.796E-01			2.147E+00	Ψ# %#	IN	
Tc- 99m	140.51	-96.9 ±	41.9	133.6	2.50292E-01	00.00		120212-00100							2.1472.00	ATT		積算法
U -235	143.76	86.8 ±	38.7		2.57063E+11	89.00	1.000000	0.789044	1.000000	1.997	-6.956E-01 ±	3.004E-01			9.587E-01	\$#		3 = 62 · +
Ce-141	145.44	110.8 ±	38.6		3.25500E+01	11.00	1.000000	0.790076	1.000000	1.989	5.062E+00 ±				6.836E+00			積算法
* Ra-226	186.18	234.6 ±	34.9			48.40	1.000000	0.790605	1.000000	1.984	1.472E+00 ±	5.131E-01			1.542E+00	%# •**		積算法
Te-132	228.16	42.8 ±	32.6		5.84035E+05	3.30	1.000000	0.802322	1.000000	1.765	5.140E+01 ±	7.641E+00	5.140F+01	+ 7641E+0	0 25115.01	\$#		積算法
		12.0 ==	02.0	100.5	3.25833E+00	88.00	1.000000	0.812592	1.000000	1.510	4.111E-01 ±	3.135E-01		- 7.071L10		%#		関数適合
Th-227	236.00	25.6 ±	32.5	1010	. E7000E	and and									9.657E-01	\$#		積算法
* Pb-212	238.63		43.4		2.57063E+11	11.00	1.000000	0.814344	1.000000	1.471	2.019E+00 ±	2.565E+00			7.0005.00			
< Ra−224	240.98		31.9		5.15002E+12	43.00	1.000000	0.814921	1.000000	1.458	2.867E+01 ±		2 867E+01	+ 07105-0	7.966E+00	%#	N	積算法
Ge- 75	264.61				5.15002E+12	3.90	1.000000	0.815433	1.000000	1.447	2.762E+01 ±	7.218F+00	2.007E-01	- 0./19C-0		%#		関数適合
Y - 93	266.90		27.6		.74861E-02	11.10	1.000000	0.820361	1.000000	1.346	2.465E+00 ±				6.581E+01	%#		関数適合
	200.00	40.6 I	25.4	78.4 4	.27083E-01	6.80	1.000000	0.820818	1.000000	1.337	5.718E+00 ±	3.566E+00			7.341E+00	%#		積算法
Ce-143	293.26	26.5 -										0.0001.00			1.101E+01	%#	N	積算法
Cr- 51	320.08		43.4		.37500E+00	42.00	1.000000	0.825861	1.000000	1.243	8.923E-01 ±	1.061E±00						
× Pb−214	351.99		22.0		.77010E+01	10.20	1.000000	0.830600	1.000000	1.162	-4.038E+00 ±	2.360E+00			3.263E+00	\$#		積算法
I -131			28.3		.84035E+05	36.70	1.000000	0.835797	1.000000				1.0505.04		7.878E+00	\$#		積算法
Sb-125	364.48		21.2	70.2 8	.04000E+00	81.00	1.000000	0.837714	1.000000	1.050	1.810E+01 ± -4.365E-01 ±	3.110E-UI	1.858E+01	± 7.551E-01		%#		関数適合
30 123	427.95	1.0 ±	20.3	65.4 9.	89828E+02	30.00	1.000000	0.846588	1.000000	0.926	4.591E-02 ±	0.1/5E-U1			1.053E+00	\$#		積算法
A 100	404.00									0.020	4.331E-02 ±	9.308E-01			3.003E+00	\$#		積算法
Ag~108m	434.00		19.7	65.0 4.	63868E+04	90.50	1.000000	0.847367	1.000000	0.916	-2 616E 01 -	0.0075 04						
Te-129	459.60		17.8	57.1 4.	82639E-02	7.10		0.850548			-2.616E-01 ±				9.998E-01	%#	:	積算法
Be- 7	477.59	-9.8 ± 2	24.1	77.5 5.	32900E+01	10.35		0.852680	1.000000	0.850 -	2.414E+00 ±	3.654E+00			1.172E+01	%#		積算法
Ru-103	497.08		17.4	55.0 3.	93500E+01	86.40		0.854901			-1.423E+00 ±				1.123E+01	\$#		積算法
An-511	511.00	58.0 ± 2	20.4	77.5 3.	65250E+12 2	200.00		0.856434		0.824	3.778E-01 ±	3.118E-01			9.866E-01	\$#		積算法
N 1 1 1 2 2 -								000707	1.000000	0.806	4.588E-01 ±	1.614E-01			6.133E-01	%#		関数適合
Nd-147	531.01		15.9	50.1 1.0	09800E+01	12.00	1.000000 (0.858564	1.000000	0.700	0.0045							
Ba-140	537.27	5.5 ± 1	15.8).859214		0.782	3.264E+00 ±	2.164E+00			6.819E+00	\$#	3	預算法
Sr- 91	555.57	7.0 ± 1	6.1).861069			3.839E-01 ±					\$#		ig 并丛 ig 算法
Bi-207	569.65	-14.4 ± 1	2.1			97.74		- 4		0.754	1.941E-01 ±	4.471E-01				%#		ig弄丛 漬算法
								0.862454	1.000000	U.740 -	2.544E-01 ±	2 122E_01				%#	S	

[、] C: 積算法 N: 近接処理 D: 分割 S:寄与差引 E:同一核種処理 W:和処理 X:レンジ外(*1) L:2σ以上 A:注意(*2) 計算方法 G:関数適合 C:積算法 T: 試料保存期間が半減期×64を超えた為、試料保存中の減衰補正をOFF *1)測定レンジ外にピークがある *2)サーチされていないが計数が、BG分析なら2σ以上、核種分析なら DL以上

M120120816113837

M120120816113837 2012年08月16日 11時38分

核種分析結果1

州足口时			2012	4007105	3 11時38分													
核種名	エネルギー	ピーク面	積	検出限界	半減期	放出比	サム効果	自己吸収	減衰補正	検出効				 均放射能	検出限界値	厚州	14 1	=1 (===================================
	(keV)	(count	:s)	(counts)	(日)	(%)	補正係数	補正係数	補正係数	(%)	92	/kg)		~אונאמעניג ק/kg) (Mark	訂异力法
* TI-208	583.14	476.2 ±	25.1	48.6	5.15002E+12	30.96	1.000000	0.863747	1.000000	0.726	31.00		27145+01	± 1.373E+0)		DD &L W A
Ga- 74	595.88	2.2 ±	15.6	51.2	5.72917E-03	91.20	1.000000	0.864940	1.000000	0.714	4.247E-02 ±	- 3.050E-0	1	± 1.373ET				関数適合
* Cs-134	604.66	410.4 ±	23.6	49.5	7.53146E+02	97.56	0.962884	0.865746	1.000000	0.679				± 3.604E-0	1.003E+00			積算法
* Bi−214	609.31	457.0 ±	24.6	45.6	5.84035E+05	46.10	1.000000	0.866168	1.000000	0.701				± 8.684E-0		• • •		関数適合
Ru-106	622.20	-1.8 ±	13.5	45.5	3.66500E+02	9.80	1.000000	0.867321	1.000000	0.690	-3.461E-01 ±	- 2.554E+0	1.0702.01	± 0.004E=0		%# ***		関数適合
											0.1012 01 2	- 2.0042.00	•		8.596E+00	\$#		積算法
As- 74	634.80	0.1 ±	14.7	48.9	1.77900E+01	15.12	1.000000	0.868423	1.000000	0.679	1.441E-02 ±	- 1 829E+00	1		6.0755.00	0.44		1 to 600 1 to
Nb~ 97	657.92	−1.9 ±	12.8	43.4	5.00694E-02	98.20	1.000000	0.870385	1.000000	0.660	-3.816E-02 ±				6.075E+00		N	積算法
* Cs-137	661.64	547.2 ±	26.4	49.4	1.10211E+04	85.00	1.000000	0.870694	1.000000	0.657				± 6.037E-0	8.537E-01	%# •••	N	積算法
⊾ I −132	667.69	10.8 ±	17.5	56.4	9.51917E-02	98.70	1.000000	0.871192	1.000000	0.652	2.149E-01 ±			⊥ 0.037⊑~0		\$#		関数適合
Sb-127	685.70	11.0 ±	14.2	46.1	3.91000E+00	36.00	1.000000	0.872647	1.000000	0.638	6.107E-01 ±				1.118E+00	\$#	NS	積算法
									1.000000	0.000	0.107E 01 ±	. 7.000E-01	l		2.558E+00	\$#		積算法
Te-129m	695.98	11.0 ±	14.2	46.1	3.35200E+01	2.90	1.000000	0.873459	1.000000	0.631	7.671E+00 ±	0 8815+00	1		0.0105.01	0/1/		*****
* Bi-212	72 <mark>7.2</mark> 7	104.3 ±	12.8	46.0	5.15002E+12	6.30	1.000000	0.875851	1.000000	0.609				± 40415:0	3.213E+01 0 1.529E+01	%#		積算法
Mo- 99	739.40	−8.6 ±	13.8	47.0	2.75083E+00	12.60	1.000000	0.876748	1.000000	0.601	-1.446E+00 ±			± 4.241E+0		%# ^	S	関数適合
Zr- 97	743.36	9.8 ±	13.2	43.1	7.04167E-01	92.80	1.000000	0.877037	1.000000	0.599	2.259E-01 ±				7.919E+00	\$#		積算法
Zr- 95	756.72	2.9 ±	15.7	51.6	6.39800E+01	54.60	1.000000	0.878000	1.000000	0.590	1.138E-01 ±				9.905E-01	%#		積算法
								0.070000	1.000000	0.530	1.130E-01 ±	0.22UE-U1			2.042E+00	\$#	S	積算法
Nb- 95	765.79	-31.2 ±	22.5	74.3	3.49700E+01	99.82	1.000000	0.878643	1.000000	0.585	-6.825E-01 ±	4.0000 01						
TI-206	803.30	-19.3 ±	21.3	70.0	5.84035E+05	0.01	1.000000	0.881217	1.000000						1.625E+00	\$#	S	積算法
Co- 58	810.76	1.4 ±	12.5	42.1	7.07800E+01	99.44	0.990643	0.881712	1.000000	0.553	-7.941E+03 ±				2.888E+04	%#	S	積算法
Cs-136	818.50	1.7 ±	11.9	40.4	1.30000E+01	99.70	1.000000	0.882221	1.000000	0.554	3.247E-02 ±				9.768E-01	\$#		積算法
Mn− 54	834.83	-39.3 ±	13.7		3.12200E+02		1.000000	0.883277	1.000000		3.849E-02 ±				9.319E-01	%#		積算法
							1.555555	0.000277	1.000000	0.343	-9.197E-01 ±	3.210E-01			1.169E+00	\$#	S	積算法
Mn- 56	846.75	−14.1 ±	11.5	41.0	1.07438E-01	98.87	1.000000	0.884033	1.000000	0.539	-2.2705 01 1	0.7475 04						
Ag-110m	884.67	10.4 ±	12.1		2.52200E+02	72.80	1.000000	0.886359	1.000000	0.539	-3.370E-01 ±				9.813E-01	%#		積算法
* Ac−228	911.20	295.7 ±	19.5		5.15002E+12	27.00	1.000000	0.887919	1.000000		3.507E-01 ±				1.336E+00	%#		積算法
Zn- 63	962.06	19.9 ±	17.8		2.63889E-02	6.60	1.000000	0.890768		0.508	2.749E+01 ±	1.815E+00	2.740E+01 :	± 1.105E+00	3.949E+00	%#		関数適合
Pa-234m	1001.03	30.9 ±	13.3		1.63194E+12	0.59	1.000000	0.892834	1.000000	0.487	7.927E+00 ±				2.243E+01	%#	NDS	積算法
				110		0.55	1.000000	0.092034	1.000000	0.471	1.419E+02 ±	6.102E+01			1.882E+02	%#		積算法
Fe- 59	1099.22	-3.7 ±	13.3	45.2	1.45600E+01	56.50	0.996971	0.007644	1 000000	0.405	1000= 0/ -							
Zn- 65	1115.52	-0.5 ±	10.9		2.44000E+02	50.75	1.000000	0.897644	1.000000		-1.926E-01 ±				2.342E+00	\$#		積算法
Co- 60	1173.21	-2.3 ±	12.9		1.92556E+03	100.00		0.898393	1.000000		-2.830E-02 ±				2.192E+00	\$#	N	積算法
Y - 91	1208.00	-12.1 ±	15.4		5.85100E+01	0.30	0.972724	0.900940	1.000000		-7.239E-02 ±				1.384E+00	\$#		積算法
Co- 60	1332.47	-4.9 ±	8.6		.92556E+03		1.000000	0.902404	1.000000		-1.270E+02 ±				5.474E+02	%#		積算法
			0.0	01.0	.02000ETU3	100.00	0.971908	0.907247	1.000000	0.363	-1.709E-01 ±	3.025E-01			1.108E+00	\$#		積算法
K – 40	1460.75	1823.7 ±	43.7	29.9 4	l.66424E+11	10.67	1.000000	0.011005	4.000005									
La-140	1596.49	9.7 ±	10.8		.67792E+00	95.50		0.911682	1.000000	0.346	6.302E+02 ±		6.302E+02 =	± 1.509E+01	1.031E+01	\$#	S	関数適合
Sb-124	1691.02	7.4 ±	4.5		.02000E+01			0.915868	1.000000	0.322	4.050E-01 ±				1.489E+00	\$#	NS	積算法
		• • • • • • • • • • • • • • • • • • • •	7.0	10.1		49.00	1.000000	0.918523	1.000000	0.307	6.316E-01 ±	3.812E-01			1.368E+00	%#		積算法

^{*:} 検出 Mark C: 積算法 N: 近接処理 D: 分割 S:寄与差引 E:同一核種処理 W:和処理 X:レンジ外(*1) L:2 σ以上 A:注意(*2) 計算方法 G:関数適合 C:積算法 T: 試料保存期間が半減期×64を超えた為、試料保存中の減衰補正をOFF

M120120816113837 2012年08月16日 11時38分

核種定量結果2

)				. ,,	110日 11	#·3 00) 3												
核種名	エネルギー	ピーク チャンネル	ピーク	領域	Iri	、ベース	スライン		半値幅	グロス カウント	バック		妨害		ピーク		Mark	
	(keV)	テヤンイル (ch)	(ch	1)	但 (ch		高 (ch))	(ch)	カウント (counts)	グラウンド (counts)		カウント (counts)		バッググラウンド (counts)		(105R5334)	
Pb-210	46.50	92.87	89 -	96	85 -	88	97 -	100	1.973	728.0	698.0 ±	26.4	0.0 ±	0.0	0.0 ±	0.0		
Am-241	59.54	118.94	115 -	122	110 -	114	131 -	135	2.001	942.0	889.3 ±	28.0	0.0 ±	0.0	0.0 ±	0.0	N	
Pb-Ka1	74.97	149.08	141 -	162			2		1.826	2601.0	1590.0 ±	43.7	0.0 ±	0.0	0.0 ±	0.0	31.5	
Bi-Ka1	77.11	153.67	141 -	162	-		2		1.852	2601.0	1590.0 ±	43.7	0.0 ±	0.0	0.0 ±	0.0		
Th-228	84.37	168.60	160 -	194	-		-		2.649	993.0	831.3 ±	28.1	824.4 ±	274.5	0.0 ±	0.0	S	
Th-231	89.95	179.23	160 -	194	:=:		_		1.997	1172.0	949.5 ±	27.9	0.0 ±	0.0	0.0 ±	0.0	L	
Th-234	92.80	185.56	160 -	194	-		_		2.560	1112.0	830.5 ±	28.1	0.0 ±	0.0	0.0 ±	0.0	L	
Np-239	106.14	210.78	204 -	214	190 -	194	215 -	219	2.089	1277.0	1270.2 ±	39.6	0.0 ±	0.0	0.0 ±	0.0	NE	
Ce-144	133.54	266.93	263 -	271	250 -	254	272 -	276	2.136	938.0	968.9 ±	31.0	0.0 ±	0.0	0.0 ±	0.0	N	
Ge- 75m	139.68	279.20	275 -	283	270 -	274	284 -	288	2.146	881.0	936.9 ±	29.0	0.0 ±	0.0	0.0 ±	0.0	N	
Tc- 99m	140.51	280.86	277 -	205	070	076	000	000	0.440									
U -235	143.76	287.36	284 -	285 291	272 - 279 -	276	286 -	290	2.148	876.0	972.9 ±	29.6	0.0 ±	0.0	0.0 ±	0.0		
Ce-141	145.44	290.73	287 -	294	282 -	283	292 -	296	2.153	870.0	783.2 ±	25.0	0.0 ±	0.0	0.0 ±	0.0		
Ra-226	186.18	372.03	363 -	381	282 -	286	295 -	299	2.156	878.0	767.2 ±	24.8	0.0 ±	0.0	0.0 ±	0.0		
Te-132	228.16	456.14	452 -			451	401	405	3.271	941.0	707.4 ±	25.2	0.0 ±	0.0	0.0 ±	0.0		
16 102	228.10	450.14	432 -	460	447 -	451	461 -	465	2.284	581.0	538.2 ±	22.0	0.0 ±	0.0	0.0 ±	0.0	2.	
Th-227	236.00	471.82	468 -	475	463 -	467	489 -	493	2.295	534.0	508.4 ±	22.9	- 0.0 ±	0.0	0.0 ±	0.0	N	
Pb-212	238.63	477.22	468 -	493	-		_		2.233	2579.0	910.4 ±	38.2	0.0 ±	0.0	0.0 ±	0.0	•••	
Ra-224	240.98	481.78	468 -	493	-		_		3.195	2579.0	910.4 ±	38.2	155.6 ±	7.8	0.0 ±	0.0	LS	
Ge- 75	264.61	529.03	525 -	533	520 -	524	534 -	537	2.337	391.0	362.1 ±	19.3	0.0 ±	0.0	0.0 ±	0.0	LU	
Y - 93	266.90	533.61	530 -	537	525 -	529	546 -	550	2.340	351.0	310.2 ±	17.2	0.0 ±	0.0	0.0 ±	0.0	N	
Ce-143	293.26	586.33	582 -	595	577 ~	581	605 -	609	2.378	828.0	451.6 ±	26.5	339.9 ±	18.8	0.0 ±	0.0	NS	
Cr- 51	320.08	639.95	636 -	644	631 -	635	645 -	649	2.415	237.0	274.5 ±	15.7	0.0 ±	0.0	0.0 ±	0.0	INO	
Pb-214	351.99	703.98	695 -	713	_		_		2.353	807.0	231.3 ±	14.4	0.0 ±	0.0	0.0 ±	0.0		
I-131	364.48	728.76	725 -	733	720 -	724	734 -	738	2.476	222.0	251.1 ±	15.0	0.0 ±	0.0	0.0 ±	0.0		
Sb-125	427.95	855.69	851 -	860	846 -	850	861 -	865	2.561	206.0	205.0 ±	14.3	0.0 ±	0.0	0.0 ±	0.0		
Ag-108m	434.00	867.79	863 -	872	858 -	862	873 -	877	2.569	185.0	202.0 ±	14.2	- 0.0 ±	0.0	0.0 ±	0.0		
Te-129	459.60	918.99	915 -	923	910 -	914	932 -	936	2.603	161.0	149.2 ±	12.5	0.0 ±	0.0	0.0 ±		M	
Be- 7	477.59	954.97	946 -	959	941 -	945	960 -	964	2.626	240.0	242.2 ±	18.4	7.6 ±	0.5	0.0 ±	0.0	N	1
Ru-103	497.08	993.95	989 -	998	984 -	988	999 -	1002	2.651	153.0	131.9 ±	12.2	7.0 ±	0.0	0.0 ±	0.0	S	
An-511	511.00	1021.79	1011 -	1035	: s =		-		3.263	386.0	191.4 ±	14.5	132.8 ±	7.0	0.0 ±	0.0 0.0	LS	
Nd-147	531.01	1061.81	1057 -	1066	1051 -	1056	1067 -	1072	2.695	149.0	125.0 ±	10.2	00 4	0.0	00 +	0.0		
Ba-140	537.27		1070 -	1079	1064 -	1069	1080 -	1085	2.703	138.0	132.5 ±	10.2	0.0 ± 0.0 ±	0.0 0.0	0.0 ± 0.0 ±	0.0 0.0		

^{*:} 検出 Mark C: 積算法 N: 近接処理 D: 分割 S:寄与差引 E:同一核種処理 W:和処理 X:レンジ外(*1) L:2g以上 A:注意(*2) T: 試料保存期間が半減期×64を超えた為、試料保存中の減衰補正をOFF *1) 測定レンジ外にピークがある *2)サーチされていないが計数が、BG分析なら2g以上、核種分析なら DL以上

M120120816113837 2012年08日16日 11時38公

核種定量結果2

测定口时			2012年	F08月1	16日 11日	時38分												
核種名	エネルギー	ピーク	ピーク領	域	Just	ベース	ライン		半値幅	グロス	バック			-				
	(keV)	チャンネル (ch)	(ch)	2000	低 (ch)		高 (ch)	(ch)	カウント (counts)	グラヴンド (counts)		奶音 カウント (counts)		ピーク バックグラウンド (counts)		Mark	
Sr- 91	555.57	1110.93	1106 -		1100 -	1105	1117 -	1122	2.726	139.0	132.0 ±	11.0	0.0 ±	0.0	0.0 ±	0.0		
Bi-207	569.65	1139.10		1150	_		-		1.998	191.0	157.7 ±	12.0	66.5 ±	3.8	0.0 ±	0.0	s	
TI-208	583.14			1177	€ = 31 vorantesis		\$ <u>22</u>		2.722	597.0	116.7 ±	9.9	0.0 ±	0.0	0.0 ±	0.0	3	
Ga- 74	595.88	1191.55		1196	1181 -	1186	1197 -	1202	2.777	133.0	130.8 ±	10.4	0.0 ±	0.0	0.0 ±	0.0		
Cs-134	604.66	1209.59	1199 -	1229	1		: **		2.693	536.0	114.0 ±	10.4	0.0 ±	0.0	0.0 ±	0.0		
Bi-214	609.31	1218.69	1199 -	1000					5000 860 000						-	0.0		
Ru-106	622.20	1243.46		1229	1000		=	mauni	2.677	565.0	· 99.8 ±	9.3	0.0 ±	0.0	0.0 ±	0.0		
As- 74	634.80	1269.39		1248	1233 -	1238	1249 -	1254	2.810	99.0	100.8 ±	9.2	0.0 ±	0.0	0.0 ±	0.0		
Nb- 97	657.92			1274	1252 -	1257	1275 -	1280	2.825	112.0	111.9 ±	10.2	0.0 ±	0.0	0.0 ±	0.0	N	
Cs-137	661.64	1315.64		1319	1305 -	1310	1329 -	1334	2.854	89.0	90.9 ±	8.6	0.0 ±	0.0	0.0 ±	0.0	N	
03 107	001.04	1323.27	1312 -	1334	7		_		2.781	653.0	120.8 ±	10.0	0.0 ±	0.0	0.0 ±	0.0	••	
I -132	667.69	1335.18	1327 -	1340	1312 -	1317	1341 -	1346	2.866	150.0	1005							
Sb-127	685.70	1371.20	1366 -		1360 -	1365	1377 -	1382	2.888	152.0	126.5 ±	12.4	14.7 ±	0.8	0.0 ±	0.0	NS	
Te-129m	695.98	1391.76			1381 -	1386	1398 -	1403	2.901	110.0	99.0 ±	9.5	0.0 ±	0.0	0.0 ±	0.0		
Bi-212	727.27	1454.35		1465	-	1000	-	1400	2.939	110.0	99.0 ±	9.5	0.0 ±	0.0	0.0 ±	0.0		
Mo- 99	739.40	1478.61			1468 -	1473	1485 -	1490	2.954	238.0	89.0 ±	9.4	10.2 ±	0.7	0.0 ±	0.0	S	
					0.0		1400	1430	2.334	95.0	103.6 ±	9.7	0.0 ±	0.0	0.0 ±	0.0		
Zr- 97	743.36	1486.53	1482 -	1491	1476 -	1481	1492 -	1497	2.959	99.0	89.2 ±	8.6	00 4	0.0				
Zr- 95	756.72	1513.25	1505 -	1518	1499 -	1504	1519 -	1524	2.975	122.0	106.2 ±	11.1	0.0 ±	0.0	0.0 ±	0.0		
Nb- 95	765.79	1531.38	1522 - 1	1540	1518 -	1521	1541 -	1546	2.986	180.0	162.6 ±	18.0	13.0 ±	0.9	0.0 ±	0.0	S	
TI-206	803.30	1606.42	1599 - 1	1617	1595 -	1598	1618 -	1623	3.031	162.0	141.4 ±	17.0	48.6 ±	2.3	0.0 ±	0.0	S	
Co- 58	810.76	1621.33	1616 - 1	1626	1611 -	1615	1627 -	1632	3.040	78.0	76.6 ±	8.9	39.9 ± 0.0 ±	1.9	0.0 ±	0.0	S	
Vicent Strategy									070599650		70.0 ±	0.3	0.0 ±	0.0	0.0 ±	0.0		
Cs-136	818.50			642	1626 -	1631	1643 -	1648	3.049	75.0	73.3 ±	8.2	0.0 ±	0.0	0.0 ±	0.0		
Mn- 54	834.83	1669.48		675	1659 -	1664	1677 -	1682	3.069	88.0	107.0 ±	9.9	20.3 ±	1.4	0.0 ±	0.0	s	
Mn- 56	846.75	1693.34		698	1682 -	1687	1699 -	1704	3.083	62.0	76.1 ±	8.4	0.0 ±	0.0	0.0 ±		5	
Ag-110m	884.67			774	1758 -	1763	1775 -	1780	3.128	81.0	70.6 ±	8.0	0.0 ±	0.0	0.0 ±	0.0		
Ac-228	911.20	1822.62	1811 - 1	834	-		-		3.329	380.0	79.0 ±	8.9	0.0 ±	0.0	0.0 ±	0.0 0.0		
Zn- 63	962.06	1923.98	1010 1		1010	4404	restro.	1184019875							0.0 2	0.0		
Pa-234m	1001.03					1918	1944 -	1949	3.220	166.0	96.0 ±	11.8	50.1 ±	3.6	0.0 ±	0.0	NDS	
Fe- 59	1099.22					1996	2008 -	2013	3.265	107.0	76.1 ±	8.4	0.0 ±	0.0	0.0 ±	0.0		
Zn- 65	1115.52					2192	2205 -	2211	3.380	94.0	97.7 ±	9.2	0.0 ±	0.0	0.0 ±	0.0		;
Co- 60	1173.21					2224	2248 -	2254	3.398	63.0	63.5 ±	7.5	0.0 ±	0.0	0.0 ±	0.0	N	
55 00	1173.21	2346.37	2342 - 2	352 2	2335 -	2341	2353 -	2359	3.465	92.0	94.3 ±	8.6	0.0 ±	0.0	0.0 ±	0.0	• •	
Y - 91	1208.00	2415.97	2410 - 2	422 2	2403 -	2409	2423 -	2429	3.505	117.0	100.4	14						
Co- 60	1332.47			_		2658	2672 -	2678	3.646	117.0	129.1 ±	10.9	0.0 ±	0.0	0.0 ±	0.0		
-			. 40.11				2012	20/0	J.040	36.0	40.9 ±	6.2	0.0 ±	0.0	0.0 ±	0.0		

^{*:} 検出 Mark C: 積算法 N: 近接処理 D: 分割 S:寄与差引 E:同一核種処理 W:和処理 X:レンジ外(*1) L:2 σ以上 A:注意(*2) T: 試料保存期間が半減期 × 64を超えた為、試料保存中の減衰補正をOFF *1) 測定レンジ外にピークがある *2)サーチされていないが計数が、BG分析なら2 σ以上、核種分析なら DL以上

M120120816113837 2012年08月16日 11時38分

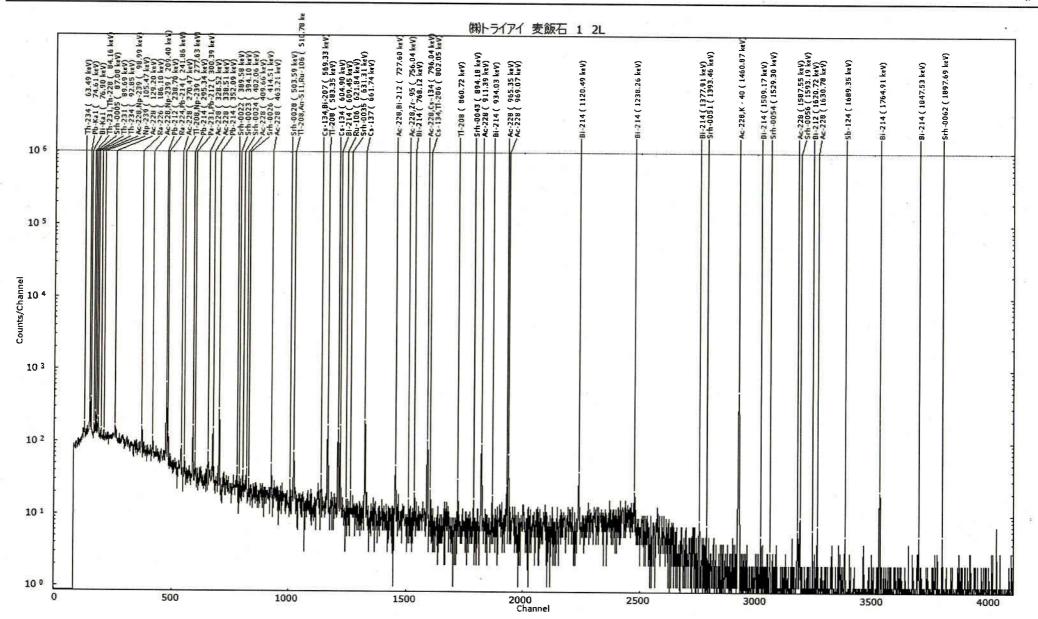
核種定量結果2

核種名	エネルギー	ピーク	ピーク領域	^'-	スライン	业体标	- Ho-	15							
	(keV)	チャンネル (ch)	(ch)	低 (ch)	スパフ 高 (ch)	半値幅 (ch)	グロス カウント (counts)	バック グラウンド (counts)		妨害 カウント		ピーク バックグラウンド		Mark	
K - 40	1460.75	2921.62	2905 - 2935			3.805	1862.0			(counts)		(counts)			
La-140	1596.49	3193.20		3162 - 3168	2001 0007			27.9 ±	5.8	6.9 ±	0.5	0.0 ±	0.0	S	
Sb-124	1691.02				3201 - 3207	3.942	46.0	12.5 ±	4.2	23.7 ±	7.3	0.0 ±	0.0	NS	
	7001.02	3375.00	3372 - 3386	3364 - 3371	3387 – 3394	4.046	14.0	6.6 ±	2.5	0.0 ±	0.0	0.0 ±	0.0		

- WI VE				2012年08月	16日 11時38分	`							
No.	ピーク	フィルタ	半値幅	エネルギー	グロス	バック	ネット			検出限界		 	
	チャンネル	幅			カウント	グラウンド	カウント			対ウント	拉 拜力		
	(ch)	(ch)	(ch)	(keV)	(counts)	(counts)	(counts)				核種名		•
1	126.84	2.00	2.009	63.49	1130.0	1001.6	128.4 ±	43.9		(counts)	-	 	
2	149.08	2.00	1.827	74.61	1228.0	806.2	375.0 ±	33.3	*	132.0	Th-234		-
3	153.67	2.00	1.852	76.90	1526.0	916.6	567.7 ±			115.1	Pb-Ka1		
4	168.18	3.00	2.649	84.16	993.0	831.3	118.7 ±	36.8	*	124.8	Bi∸Ka1		
5	174.01	2.00	2.204	87.08	1049.0	712.3	291.9 ±	43.5		125.4	Th-231,Th-228		
					70 10.0	712.0	291.9 <u>T</u>	46.6	*	106.9			
6	179.23	2.00	1.997	89.69	898.0	712.1	125.8 ±	41.9	*	106 1	71 004		
7	185.56	2.00	2.560	92.85	1112.0	830.5	243.3 ±	43.5	*	106.1	Th-231		
8	197.83	3.00	2.076	98.99	956.0	907.2	48.8 ±		*	125.4	Th-234		
9	210.78	3.00	2.088	105.47	928.0	903.2		41.0		125.8	Ac-228,Np-239		
10	258.25	2.00	1.210	129.20	1025.0	921.6	24.8 ±	40.6		125.5	Np-239		
				720.20	1020.0	321.0	77.3 ±	20.8		126.8	Ac-228		
11	372.03	2.00	3.242	186.10	941.0	707.4	233.4 ±	247		4444	-	N N	
12	418.62	2.00	2.537	209.40	748.0	594.9		34.7	*	114.6	Ra-226		
13	477.22	2.00	2.235	238.70	1885.0	458.2	131.6 ±	26.6	*	105.5	Ac-228,Np-239		
14	483.54	2.00	3.186	241.86	707.0		1410.3 ±	43.4	*	93.5	Pb-212		
15	540.75	2.00	2.345	270.47	475.0	434.6	281.5 ±	31.5	*	90.4	Ra-224,Pb-214		
			2.0-10	270.47	473.0	331.2	143.8 ±	27.8	*	79.9	Ac-228		
16	555.06	3.00	3.349	277.63	370.0	291.6	82.0 ±	00.0					
17	590.49	2.00	2.383	295.34	694.0	310.2		22.2	*	75.3	TI-208,Np-239		
18	600.59	2.00	2.206	300.39	404.0	269.4	362.2 ±	25.6	*	82.5	Pb-214		
19	656.84	2.00	1.552	328.52	378.0		94.4 ±	17.8	*	75.3	Pa-231,Pb-212		
20	676.81	2.00	1.984	338.51	555.0	297.0	66.9 ±	14.7		75.9	Ac-228		
				000.01	333.0	264.6	250.8 ±	21.7	*	71.9	Ac-228		
21	703.98	2.00	2.353	352.09	807.0	231.3	E610 +	00.0					
22	778.95	2.00	2.510	389.58	239.0	220.5	561.8 ±	28.3	*	67.6	Pb-214		
23	788.00	3.00	2.516	394.10	175.0		18.5 ±	21.7		68.3			
24	803.91	3.00	1.412	402.06	215.0	216.9	-41.9 ±	20.0		67.6			
25	819.11	3.00	2.537	409.66		196.2	29.4 ±	10.7		62.6			
		0.00	2.007	409.00	219.0	166.0	53.0 ±	19.2		57.9	Ac-228		
26	828.82	3.00	2.543	414.51	176.0	149.3	007						
27	926.21	3.00	3.178	463.21	268.0		26.7 ±	17.6		55.2			
28	1006.98	2.00	2.660	503.59	146.0	154.0	104.7 ±	17.0	*	57.3	Ac-228		
29	1021.36	2.00	3.227	510.78		149.4	$-3.4 \pm$	17.8		58.4			
30	1138.44	2.00	1.994		403.0	199.1	188.3 ±	19.1	*	69.0	TI-208,An-511,Ru-106		
		2.00	1.334	569.33	177.0	145.0	52.1 ±	11.5		53.6	Cs-134,Bi-207		
31	1166.49	2.00	2.722	583.35	597.0	116.7	470.0						
32	1209.59	2.00	2.693	604.90	536.0		476.2 ±	25.1	*	48.6	TI-208		
33	1218.69	2.00	2.677	609.45		114.0	410.4 ±	23.6	*	49.5	Cs-134		
34	1243.46	3.00	2.809	621.84	565.0	99.8	457.0 ±	24.6	*	45.6	Bi-214		
35	1262.40	3.00	2.821		99.0	100.8	-1.8 ±	13.5		45.5	Ru-106		
	, .v	0.00	2.021	631.31	122.0	106.7	15.3 ±	14.5		46.7			

No	. ピーク チャンネル	フィルタ 幅	半値幅	エネルギー	グロス カウント	パック グラウンド	ネット			検出限界	14.000 =		57.	
	(ch)	(ch)	(ch)	(keV)	(counts)		カウント			カウント	核種名			·
	16 1323.27	2.00	2.781	661.74	669.0	(counts) 127.4	(counts)	20.6		(counts)	<u>.</u> .			
	17 1455.00	2.00	3.740	727.60	227.0		547.2 ±	26.4	*	51.6	Cs-137			
	8 1511.89	5.00	2.974	756.04	103.0	99.9	127.5 ±	15.8	*	46.3	Ac-228,Bi-212			
	9 1536.05	4.00	2.989	768.12	121.0	76.1	26.9 ±	13.1		41.0	Ac−228,Zṙ̀− 95			
	0 1591.89	2.00	3.365	796.04		94.4	26.6 ±	14.4		45.1	Bi-214			
	1001.00	2.00	3.303	790.04	401.0	72.6	325.9 ±	21.2	*	41.4	Ac-228,Cs-134			
4	1 1603.93	3.00	2.003	802.05	94.0	67.9	31.9 ±	8.5		40.4	Cs-134,TI-206			
4	2 1721.28	2.00	3.100	860.72	116.0	77.0	39.0 ±	13.7		41.2	TI-208			
4	3 1788.19	3.00	1.956	894.18	88.0	64.2	22.9 ±	7.4		38.1	11-200			
4	4 1822.62	2.00	3.329	911.39	380.0	79.0	295.7 ±	19.5	*	42.5	Ac-228			
4	5 1867.91	3.00	1.912	934.03	94.0	68.8	23.5 ±	7.5	•	39.2	Bi-214			
							20.0	7.0		35.2	DI-2 (4		9	
4		3.00	2.690	965.35	126.0	64.5	56.8 ±	10.8	*	38.5	Ac-228			
4		2.00	2.752	969.07	247.0	62.1	180.3 ±	15.6	*	37.6	Ac-228			
	8 2240 <mark>.</mark> 90	3.00	3.404	1120.49	176.0	80.8	95.2 ±	15.8	*	42.2	Bi-214			
4		3.00	3.539	1238.26	144.0	86.6	57.4 ±	14.8	*	42.8	Bi-214			
5	0 2755.88	5.00	3.395	1377.91	44.0	30.6	21.6 ±	6.6	-	28.0	Bi-214			
										20.0	DI 214			
5		3.00	3.715	1393.46	23.0	23.2	-0.2 ±	6.7		25.1				
5		3.00	3.807	1460.87	1858.0	16.7	1831.3 ±	43.7	*	22.1	Ac-228,K - 40			
5		5.00	3.844	1509.17	23.0	17.0	6.0 ±	6.3		22.6	Bi-214			
5		6.00	3.867	1529.30	12.0	19.0	-7.0 ±	5.6		23.5	DI 214			
5	5 3175.32	6.00	4.174	1587.55	33.0	13.6	19.8 ±	6.0		20.9	Ac-228			
										20.0	710 220			
5		4.00	3.814	1593.19	38.0	14.3	24.3 ±	6.3	*	21.5				
5		4.00	3.968	1620.72	17.0	12.0	5.0 ±	5.4		19.9	Bi-212			
5		4.00	2.291	1630.78	23.0	12.0	11.7 ±	4.2		19.9	Ac-228			
5		4.00	4.044	1689.35	14.0	6.6	7.4 ±	4.5		16.1	Sb-124			
6	3530.19	4.00	4.090	1764.91	94.0	10.5	79.7 ±	9.8	*	18.6	Bi-214			
_	0005.50													
6		5.00	4.218	1847.53	26.0	7.0	19.0 ±	5.7	*	16.3	Bi-214			
6	2 3795.88	7.00	4.273	1897.69	14.0	5.6	8.4 ±	4.4		15.4	=· =· ·			

<u>, j</u>	測定コード	M1201208			測定日時	2012年08月16	日 11時38分	Live Time	3600	Real Time	3601.46
-	ch 0	0	0	0	0	4 0	5 0	6	7	8	9
	10 20	0 0	0 0	0	0	0	0	0	0	0	0
	30 40	0	0	0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	50	0	0	0	0	. 0	0	0	0	0	
	60 70	0 0	0 0	0	0	0 0 0	0	0	o o	0	0
	80 90	0 95	81 87	91 98	83 97	85 93	83 91	86 90	91 81	0 79 105	0 77 84
	100 110	89 99	88	91	108	101	85	102	100	94	101
	120	110	108 107	92 145	104 137	111 131	109 144	108 ∤152	122 180	119 129	122 128
	130 140	129 158	111 129	119 133	132 141	144 139	143 147	134 144	121 166	149 201	121 334
	150 160	230 117	153 120	164 129	342 108	392	199	139	137	138	132
	170 180	154 169	127 128	139	200	120 248	126 201	127 134	132 137	174 147	153 183
	190	112	122	140 109	134 114	147 136	204 104	207 105	165 128	137 145	118 113
	200 210	114 130	111 140	106 116	104 100	107 113	106	136	110 -	103	116
	220 230	101 121	107 104	126 106	104	110	105 123	107 129	116 121	128 89	114 128
	240 250	112 122	117	105	116 105	118 121	108 118	111 112	117 111	108 113	108 128
	260	112	125 109	122 139	113 129	119 118	118 98	120 102	120 104	161 95	146 92
	270 280	107 107	93 96	92 91	94 101	124 100	109	90	102	95	90
	290 300	117 97	104 83	103 91	111	100	94 90	112 90	117 77	108 102	118 102
	310	112	92	100	85 83	90 95	99 103	107 93	106 88	88 86	102 86
	320 330	78 87	85 90	71 86	93 82	96 87	81 68	84	91	95	84
	340 350	83 74	99 102	89 78	82 64	74 81	95	61 100	81 68	85 87	97 95
	360	93	83	95	81	68	70 73	77 79	76 83	79 94	72 91
	370 380	109 67	124 95	156 74	127 70	86 75	95 84	59 66	93 62	75	72
	390 400	84 73	84 68	69 71	71 67	52 64	76 65	86	62	73 69	67 78
	410	70	73	71	52	73	71	74 78	68 76	66 110	87 114
	420 430	87 63	76 60	73 85	63 65	58 61	70 62	70 70	64 66	60 60	60
	440 450	64 51	76 52	57 66	70 71	52 67	57 67	65 77	68	59	71 50
	460	53	59	57	67	73	62	59	57 73	61 55	62 55
	470 480	54 60	71 87	65 109	68 126	67 127	99 105	306 45	637 48	482	166
	490 500	41 44	67 40	45 50	58 36	57 41	43 36	60	43	47 52	58 46
	510	49	40	42	43	58	47	53 48	53 50	37 41	54 41
	520 530	43 54	51 42	22 43	42 42	31 43	34 41	43 41	40	41	52
	540 550	70 43	87 32	46 32	36 42	34 44	42 60	39	45 29	62 20	53 27
	560	25	35	42	27	37	39	47 34	43 33	35 27	35 37
	570 580	31 31	37 25	40 36	38 32	31 31	36 35	38 32	45	33	30
	590 600	160 66	159 69	81 44	33 41	43 38	29 36	37 29	32 40	47 29	78 41
	610 620	26	42	21	28	36	24	24	30 31	23 31	38 27
	630 640	43 29	40 24	38 30	28 34	44 24	32 34	31 27	38 28	30 22	27 27
	650	24 40	24 35	33 21	28 28	24 46	32 43	41 52	33 72	20	33
	660 670	25	39	34	31	37	39	40	33	38 32	35 30
	680 690	28 44 24	31 27	44 28	34 29	44 21	51 24	105 27	151 19		32 32
	700 710	24 32	25 31	27 69	28 154	27 270	30 146	36 54	20 33	29	35
-	710	20	20	21	15	25	25	14	29		31 29


	測定コード ch	M1201208	16113837 1	2	<u>測定日時</u> 2 3	2012年08月16 4		Live Time		Real Tir	
	720 730	36 27	25 24	23 22	27 33	37 25	26 25	24 28	7 18 29	30 24	9 18 20
	740 750 760 770 780	24 26 21 25 23	26 26 21 24 29	32 23 21 18 18	24 19 24 29 28	21 23 34 28 20	22 14 29 23 10	19 19 25 25	21 18 25 23 20	24 25 23 26 33	26 26 23 44 20
	790 800 810 820 830	14 15 24 33 23	22 20 22 34 17	17 23 21 14 22	26 28 20 19 22	30 40 29 19 22	16 24 20 17 13	21 23 23 19 25	26 17 24 15 22	23 25 29 27 19	19 26 42 31 20
	840 850 860 870 880	25 22 27 21 26	16 17 24 15	22 22 17 20 22	15 17 24 12 19	18 23 24 19 24	12 18 15 14 24	12 14 16 17 19	20 17 18 21 12	21 27 12 21 26	26 24 20 19 23
	890 900 910 920 930	17 17 16 22 16	21 20 21 19 18	20 23 16 23 9	17 20 19 17 15	17 14 16 28 12	23 18 16 32 18	9 21 23 49 18	20 18 19 41 29	21 18 12 28 22	23 19 10 16
	940 950 960 970 980	16 24 18 20 19	23 22 13 13 17	16 11 11 20 19	19 23 15 27 18	22 20 19 16	17 21 24 15	23 7 17 15 14	18 11 15 15	15 12 15 18 19	19 14 10 19
	990 1000 1010 1020 1030	17 12 14 39 19	12 14 10 72 14	14 12 11 65 10	21 9 15 46 18	14 17 21 31 13	13 11 17 16 11	14 17 19 19	15 30 15 21 16	14 16 17 19 7	14 10 26 23 6
	1040 1050 1060 1070 1080	16 19 18 12 19	11 10 20 15 11	19 16 15 15	15 12 19 13	16 13 11 15 21	16 18 17 13 11	18 9 14 9 13	15 16 14 15 15	15 10 13 16 10	12 9 3 15
	1090 1100 1110 1120 1130	11 13 10 16 12	12 9 17 14 21	10 11 13 13 12	15 12 9 19 14	16 10 13 20 16	22 13 16 19 6	8 12 15 18 11	12 14 6 27 14	7 12 11 21 35	19 8 16 12 33
	1140 1150 1160 1170 1180 1190 1200	20 12 19 12 13 17	22 15 15 11 20 10 12	11 12 12 10 12 13	9 14 20 11 16 6 9	14 13 31 12 13 12	17 12 72 8 12 19	15 9 164 6 6 13	11 13 162 11 15 12	13 10 87 15 15 17	12 16 26 10 13 12
	1210 1220 1230 1240 1250	146 96 17 10 10	75 31 11 7 16	27 18 11 3 9	18 15 13 16 10	13 15 10 15 7	11 9 9 11	19 12 7 5 15	65 10 10 7 7	145 10 10 13	165 9 12 10 7
	1260 1270 1280 1290 1300	12 11 12 13 15	5 9 9 6 12	21 18 5 14 14	18 9 10 8 5	14 10 13 13	10 9 11 11 7	12 13 8 6 12	10 14 14 10	12 10 11 9	11 14 9 7
	1310 1320 1330 1340 1350	6 12 11 3 7	9 29 20 5 7	12 102 13 8 9	8 193 10 9 8	15 159 10 7 11	9 104 8 11 10	9 20 6 8 7	13 20 7 6 10	6 16 13 5 17	8 9 6 14 6
	1360 1370 1380 1390 1400	12 11 9 11 12	7 11 12 7 9	12 6 11 8 11	10 9 13 9 6	14 10 6 7 12	3 7 10 12 8	12 8 5 16 13	11 4 9 10 9	15 6 13 7 9	10 8 8 6 6
_	1410 1420 1430	10 8 7	9 6 12	7 3 12	6 13 9	14 6 8	7 4 9	8 5 10	7 12 6	11 8 4	6 6 13

測定コ ch	<u> </u>	M12012081 0	16113837 1	2	<u>測定日時</u> 3	2012年08月1 4	<u>6日 11時38分</u> 5	Live Tim			me 3601.46
1440		5 11	13 10	6	4	2	12	9	7	10	12
1460 1470	1	11	11	16 8	35 14	29 6	46 5	29 19	17 12	, 8 10	15 7
1480		11 11	6 9	7 4	8 8	7 10	7 14	11 8	7 10	11 13	10 9
1490 1500		10 9	13 8	9 5	9 10	8 3	7 5	7 9	8	10 4	9 12
1510 1520	ı	12 9	11 13	16 4	9 7	8 9	4 3	7 9	12 10	5	5
1530 1540		6 7	6 5	10 11	11 8	7	14	20	15	12 17	4 9
1550		8	10	6	13	10 6	15 10	6 6	9 10	9 10	7 10
1560 1570		6 10	11 13	10 15	9 9	9 9	8 9	10	8	12	.6
1580 1590		12 75	11 75	7 102	7 63	5	7	8 10	10 12	10 7	11 33
1600		6	5	9	14	15 22	13 12	6 8	10 5	3 6	8 7
1610 1620		4 8	12 6	8 7	8 9	6 3	3 7	12 8	7 6	8 5	3 5
1630 1640		8 3	9 6	6 7	6 4	10 5	7 8	2 10	13 8	8 4	7
1650 1660		6 5	7 7	4 10	10 10	5 15	4 2	5 6	7 10	6	4 9
1670		11	12	7	15	6	6	10	11	2 6	11 11
1680 1690		7 5	13 7	13 3	6 9	3 5	11 7	8 5	8 4	7 4	6 9
1700 1710		8 4	1 9	6 7	4 9	6 8	5 4	7 2	9 4	6 11	2 8
1720 1730		6 5	30	19	13	8	5	10	ż	7	8
1740 1750		4	8 5	8 6	7 5	4 12	7 6	4 6	7 7	4 8	10 7
1760		7 2	5 7	6 9	6 9	11 4	3 7	6 10	7 3	7 10	11 6
1770 1780		8 4	7	7	= 11	8	4	6	5	9	4
1790 1800		6	7 9	6 2	4 8	8 3	7 3	5 9	10 6	16 6	13 8
1810 1820		- 6 - 6	8 7	3 8	4 2	5 7	12 5	8 7	6 9	12 8	11 12
1830		35 8	60 9	82 4	92	40	17	11	6	8	8
1840 1850		12 6	9 6	3	7 5	7 10	6 7	8 4	6 4	6 2	6 10
1860 1870		3 7	5 8	6 8 4	5 6	10 5 7	9 4	9 8	8 12	7 18	4 10
1880		8	3		10 12	6	5	6	6	8	9
1890 1900		13 14	4 7	3 2 7	4 8	6 5 7	5 8	10 9	5 8 5 5	5 9	6 8
1910 1920		7 10	7 3	6 5	3 10	, 7 6	8 12 9 12	9 4 6	5 5	9 8	15 6
1930		24	25		7	4	7	20	8 50	10	16
1940 1950		22 7	9 8	14 6 9	13 6	4 8	, 6 10	11 13	6 10	66 5	50 4
1960 1970		10 4	6 5	8 4	9 7	3 7	13 3	7 10	7 3	8 10 4	8 5 5
1980 1990		4	11	1	4	5	7	9	6	5	2
2000		6 8	7 14	9 12	10 10	8 14	6 7	8 11	6 7	6 6	12 8
2010 2020		7 12	5 8	6 3	3 1	6 13	4 6	9 7	9 10	3 9	3 5
2030 2040		3 5	3 6	8 10	12 6	4	6	7	3	6	6
2050 2060		5 12	7 5	2 7	7	6 8	8 3	10 6	8 12	6 12	11 7
2070		8	5	2	8 6	10 12	13 4	5 9	9 5	11 9	2
2080 2090		9 8	4 7	5 9	6 7	7 14	4 6	6 7	6	11	10
2100 2110		10 5	2 8 -	6 3	11 6	9 7	8	1	8 5	7	11 5
2120 2130		7 8	6 2	5 7	6	9	6 4	6 13	10 8	1 7	7 9
2140		8	2	6	8 6	= 8 3	2 9	8 6	5 7	7 11	7 13
2150		5	5	8	2	5	7	7	8	8	10

測定コード	M1201208			測定日時 20	12年08月16日	11時38分	Live Time	3600	Real Time	3601.46
ch	0	1 .	2	3	4	5	6	7	8	9
2160 2170 2180 2190	5 10 9 9	10 5 10 10	8 7 7 9	4 9 7 6	12 5 3 6	8 11 3 9	11 7 6 13	5 8 8 4	5 9 5 7	6 9 9 7
2200 2210 2220 2230 2240	10 7 6 6 24	7 8 3 3 3	12 6 6 9 19	7 8 11 6 9	6 13 5 8 9	12 4 6 6 7	8 6 2 8 6	8 4 8 9 4	11 5 4 11 7	4 2 5 26 6
2250 2260 2270 2280 2290	8 7 6 15 8	6 10 9 12 5	7 9 6 8 10	7 7 5 8 8	5 3 7 10 8	10 5 5 4 11	5 5 10 9 6	5 6 6 8 8	8 10 8 12 8	6 5 9 10 10
2300 2310 2320 2330 2340	6 11 8 11 10	8 - 8 10 11 11	4 8 7 10 8	7 12 4 10 10	10 4 13 8 8	9 6 6 10 2	13 4 12 7 10	10 13 6 10	11 6 6 12 9	8 8 9 6 8
2350 2360 2370 2380 2390	6 3 6 6 7	12 8 9 4 10	8 4 16 11 6	6 5 9 7 5	8 8 12 10	11 9 9 4 3	6 8 5 9	11 11 12 12 9	10 7 10 9 12	2 8 8 12 8
2400 2410 2420 2430 2440	6 11 9 11 14	10 12 5 12 12	3 7 11 5 10	10 5 8 5 6	6 4 11 5 8	9 10 11 8 11	8 4 12 13 8	10 16 13 9 8	5 11 12 5 9	13 12 11 16 14
2450 2460 2470 2480 2490	7 5 9 6 9	9 8 6 7 7	12 11 10 12 4	11 15 15 7 6	12 7 9 4 9	11 12 11 4 8	9 11 21 7 7	13 6 21 6 4	6 7 16 4 5	10 11 10 6 7
2500 2510 2520 2530 2540	5 8 4 4 5	2 10 4 5 7	7 8 10 10 6	7 6 5 4 1	5 4 4 6 4	7 4 6 8 3	4 10 5 7 2	8 7 2 4 4	9 2 8 7 10	9 6 9 2 3
2550 2560 2570 2580 2590 2600 2610	1 2 4 4 3 5	4 8 9 3 3 6 8	1 7 6 5 3 5 5	4 6 8 10 5 5	5 6 6 7 10 10	5 5 7 7 5 3	5 3 13 5 4 4 7	6 1 9 5 4 5 7	8 7 4 2 7 3	3 8 6 5 3 5
2620 2630 2640 2650 2660	5 5 6 2 5	1 7 4 2	6 3 8 4 3	7 6 6 2 3	9 1 2 6 2	4 7 4 6 3	6 2 7 2 2	4 4 1 1	0 8 4 7	4 7 2 2 2
2670 2680 2690 2700 2710	3 7 3 1 5	2 4 5 4 3	1 3 2 2 2	0 4 1 4 5	0 2 3 2 4	3 4 4 2 3	7 1 2 3 5	2 2 6 2 2	3 1 7 2 2	5 3 1 1
2720 2730 2740 2750 2760	1 5 2 2 1	3 7 1 3	5 7 0 0 2	1 1 5 5 1	0 4 2 6 1	4 7 3 6 2	7 3 3 8 8	2 4 1 5 4	5 0 2 4 5	3 3 1 1 0
2770 2780 2790 2800 2810	4 0 0 0 0 2	3 3 0 2 2	1 5 2 3 2	5 1 2 3 3	2 0 3 3 4	4 1 1 3 3	1 1 5 1 4	3 7 1 2 5	2 1 2 2 1	1 0 0 1 2
2820 2830 2840 2850 2860	0 0 2 2 1	1 0 1 4 0	2 0 0 0 2	1 1 0 0 2	2 1 4 2 2	3 1 2 3 3	2 2 1 1 0	4 1 1 4	1 3 1 2 2	2 1 0 1 2
2870 M12012081611	2	1	3	1	2	4	3	1	2	4

測定コー ch	۴	M120120		37 1	2	測定日		2012		6日 11時		Live Time			me	3601.46
2880 2890 2900 2910		1 0 1 3		2 0 4 2	1 1 1 0		3 3 1 0		1 1 1 3		3 0 1	6 0 2 2 9	7 3 5 4 6	8 2 1 2 28		9 1 4 1 97
2920 2930 2940 2950 2960		211 2 0 2 4		3 2 0 1 1	480 1 3 0 0	92	337 0 2 0 1		201 0 1 3		72 3 0 2	20 0 1 1 0	3 2 3 1 0	1 0 2 0 1		0 2 1 1 2
2970 2980 2990 3000 3010		1 1 0 1 3		2 2 2 0 0	1 1 1 3 0		0 1 1 1		1 0 1 1		0 2 2 0 1	1 0 3 0 2	0 0 2 2 1	0 1 0 1,		2 2 2 0 5
3020 3030 3040 3050 3060 3070 3080		3 1 0 2 1 1 2		1 1 2 1 1 1	0 2 2 1 0 0		2 0 1 0 0 1 3		1 2 0 0 0 2 1		0 0 0 0 0 0	0 1 1 2 0 1	4 2 3 2 2 0	1 1 3 2 2 2 2 2		2 0 0 3 3 1
3090 3100 3110 3120 3130		0 1 1 0 2	10	1 1 2 2	1 1 2 2 0	21	0 0 0		1 2 2 1 1		1 2 2 1	1 1 1 3	1 1 1 2 1	0 0 0 0 2		0 0 0 1
3140 3150 3160 3170 3180	•	0 1 0 1		2	0 0 2 2 2		0 0 2 2 3		0 5 1 1 6		1 2 1 6 2	1 1 1 4 8	1 1 0 5	0 2 0 5 3		2 2 1 3 2
3190 3200 3210 3220 3230		0 1 0 1 0	((1 1 2)	2 1 0 2 0		0 0 1 0		2 1 0 2 0	•	Ó	0 0 0 0	2 1 1 1	1 2 2 0 1		1 0 0 1
3240 3250 3260 3270 3280		0 3 4 1	4 1 3 1 1		6 0 7 1 2		1 1 1 1 0		2 1 1 0 0			0 1 2 1 0	0 0 1 2	1 1 0 1	8	0 0 0 0
3290 3300 3310 3320 3330		1 0 0 1 0	0 0 0 1 1		2 0 1 2		2 0 0 4 0		0 1 0 0	2 0 1 2) !	1 2 1 2	0 1 1 1	1 1 2 1 0		2 0 2 1
3340 3350 3360 3370 3380	29	2 2 0 2 2	0 1 1 1 2		0 4 1 1 0		0 0 1 0		0 0 0 1 1	1 2 0 0		0 0 2 0	0 2 0 0	0 2 1 2		1 3 0 5
3390 3400 3410 3420 3430		0 1 0 2 1	1 0 1 0		0 0 0 0		0 0 1 1		0 2 0 0	0 0 1 1		1 0 0 1	1 0 1 0	0 0 1 0		3 0 2 0
3440 3450 3460 3470 3480		0 0 2 0 0	0 1 0 1 2		1 0 3 0		1 0 0 0 0		0 0 1 1 2	1 1 1 0 0		1 0 1 0	0 2 1 0	0 2 0 1		0 4 0 0
3490 3500 3510 3520 3530 3540 3550		0 1 1 1 21 0	0 1 0 0 17 0 1		1 0 0 1 5 0		0 2 1 2 0 0		0 0 0 0 2 1	3 0 0 2 1 1 2		0 0 0 4 1 2	0 0 2 13 1 2	2 0 2 14 2 0		0 0 0 13 0
3560 3570 3580 3590 3600		0 0 0 2 0	1 0 0 1 1		0 2 1 2 0		0 0 0 1	,	0 2 0 2	2 0 1 1 0		0 1 0 2	1 0 0 1 2	1 2 0 2		0 0 0 0

	**									
ch	0	1	2	3	4	5	6	7	8	9
3610	# 1	2	0	0		_				
3620	Ò	ĩ	2		1	0	1	2	1	1
3630	۰ ۱	ó		0	0	0	0	1	0	0
3640	ö	1	0	1	0	0	0	1	2	ō
3650	Ö	•	0	1	0	0	0	1	1	ĭ
3030	U	1	4	. 0	1	1	0	i	i	i
3660	0	0	0	0	1	1	0	•	•	
3670	2	1	2	Ö	ò	ò	0	0	3	0
3680	0	0,	ō	ŏ	ĭ			1	9 0	0
3690	0	Ő	2	3	2	1 -	1	2	0	3
3700	Ō	1	2	ŏ	Ó	5 0	5 2	2 1	0	1
3710	0	_			•	J	2	•	0	0
	0	1	1	1	1	0	0	1	0	0
3720	1	1	0	0	0	0	ĭ	i		·
3730	0	1	1	1	2	ŏ	ó	i	2	1
3740	0	1	0	0	ī	1	ŏ		1	1
3750	1	2	Ō	2	ż	ò	1	0 0	0	0
3760						v	•	U	2	0
3770 3770	1 0	0	0	2	3	1	1	2	1	1
3780	1		1	0	3	2	0	0	Ò	All II
3790	ó	1	0	0	1	1	1	0	Ŏ	ó
3800		0	0	2	0	2	5	Õ	2	1
3000	0	1	0	1	0	0	Ö	ŏ	ō	- i
3810	0	1	2	1	0	0				
3820	0	Ó	ō	ó		0	Ō	1	1	0
3830	Ĭ	ŏ	2		0	0	1	1	0	0
3840	ò	ő	Ó	0	0	0	0	2	1	0
3850	ŏ	Ö	0	0	1	1	0	0	0	0
		ŭ	Ū	U	0	1	1	0	0	0
3860	2	0	1	1	1	3	0	4	_	_
3870	2	0	ıi	i	ò			1	0	0
3880	0	2	ò	- i		2	0	1	0	2
3890	i	ī	2	•	0	0	1	0	0	1
3900	i	ò	ő	2 0	1 2	0	1	0	0	0
3910	•	(41)		-	-	Ū	•	0	1	0
3920	0	1	3	1	1	0	2	3	1	i i
		0	0	0	1	0	Ō	ŏ	i	i
3930	1	1	2	2	0	1	2	ĭ	i	ó
3940	1	0	1	1	0	0	2	ò	i	1
3950	1	0	0	0	1	Ö	õ	ŏ	ó	i
3960	0	0	0	2	0			_		
3970	0	2	ŏ	1		1	1	0	0	8 1
3980	ŏ	ī			0	1	1	2	1	0
3990	ĭ	ó	2 1	0	2	0	0	0	0	1
4000	i	1	50	0	2	0	1	0	0	ò
4010	3	0	1	1	1	0	3	0	1	1
4020	1	1	1	0	0	1	0	0	İ	ò
	•	•	D ₁	0	0	1	0	0	7	Ö
4030	0	0	0	0	0	0	1	0	•	
4040	1	0	3	ĭ	1	0	1	0	0	1
4050	0	Ō	ŏ	ò	Ó		1	0	1	T 0
4060	ŏ	1	ŏ	0		1	0	0	0	0
4070	ŏ	ò	1	0	0	0	0	1	1	0
		•	1	U	1	0	0 <	1	0	0
4080 4090	0	2	0	1	1	0	0	0	1	1
4090	3	Ō	0	2	0	Ŏ	=	111 - .	•	
						-				

